3.4.8 \(\int (a+b \cos (c+d x))^{3/2} (A+B \cos (c+d x)) \sec ^2(c+d x) \, dx\) [308]

3.4.8.1 Optimal result
3.4.8.2 Mathematica [C] (verified)
3.4.8.3 Rubi [A] (verified)
3.4.8.4 Maple [B] (verified)
3.4.8.5 Fricas [F]
3.4.8.6 Sympy [F(-1)]
3.4.8.7 Maxima [F]
3.4.8.8 Giac [F]
3.4.8.9 Mupad [F(-1)]

3.4.8.1 Optimal result

Integrand size = 33, antiderivative size = 232 \[ \int (a+b \cos (c+d x))^{3/2} (A+B \cos (c+d x)) \sec ^2(c+d x) \, dx=-\frac {(a A-2 b B) \sqrt {a+b \cos (c+d x)} E\left (\frac {1}{2} (c+d x)|\frac {2 b}{a+b}\right )}{d \sqrt {\frac {a+b \cos (c+d x)}{a+b}}}+\frac {\left (a^2 A+2 A b^2+2 a b B\right ) \sqrt {\frac {a+b \cos (c+d x)}{a+b}} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),\frac {2 b}{a+b}\right )}{d \sqrt {a+b \cos (c+d x)}}+\frac {a (3 A b+2 a B) \sqrt {\frac {a+b \cos (c+d x)}{a+b}} \operatorname {EllipticPi}\left (2,\frac {1}{2} (c+d x),\frac {2 b}{a+b}\right )}{d \sqrt {a+b \cos (c+d x)}}+\frac {a A \sqrt {a+b \cos (c+d x)} \tan (c+d x)}{d} \]

output
-(A*a-2*B*b)*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticE(sin 
(1/2*d*x+1/2*c),2^(1/2)*(b/(a+b))^(1/2))*(a+b*cos(d*x+c))^(1/2)/d/((a+b*co 
s(d*x+c))/(a+b))^(1/2)+(A*a^2+2*A*b^2+2*B*a*b)*(cos(1/2*d*x+1/2*c)^2)^(1/2 
)/cos(1/2*d*x+1/2*c)*EllipticF(sin(1/2*d*x+1/2*c),2^(1/2)*(b/(a+b))^(1/2)) 
*((a+b*cos(d*x+c))/(a+b))^(1/2)/d/(a+b*cos(d*x+c))^(1/2)+a*(3*A*b+2*B*a)*( 
cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticPi(sin(1/2*d*x+1/2* 
c),2,2^(1/2)*(b/(a+b))^(1/2))*((a+b*cos(d*x+c))/(a+b))^(1/2)/d/(a+b*cos(d* 
x+c))^(1/2)+a*A*(a+b*cos(d*x+c))^(1/2)*tan(d*x+c)/d
 
3.4.8.2 Mathematica [C] (verified)

Result contains complex when optimal does not.

Time = 1.92 (sec) , antiderivative size = 398, normalized size of antiderivative = 1.72 \[ \int (a+b \cos (c+d x))^{3/2} (A+B \cos (c+d x)) \sec ^2(c+d x) \, dx=\frac {\frac {8 b (A b+2 a B) \sqrt {\frac {a+b \cos (c+d x)}{a+b}} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),\frac {2 b}{a+b}\right )}{\sqrt {a+b \cos (c+d x)}}+\frac {2 \left (5 a A b+4 a^2 B+2 b^2 B\right ) \sqrt {\frac {a+b \cos (c+d x)}{a+b}} \operatorname {EllipticPi}\left (2,\frac {1}{2} (c+d x),\frac {2 b}{a+b}\right )}{\sqrt {a+b \cos (c+d x)}}+\frac {2 i (-a A+2 b B) \sqrt {-\frac {b (-1+\cos (c+d x))}{a+b}} \sqrt {\frac {b (1+\cos (c+d x))}{-a+b}} \csc (c+d x) \left (-2 a (a-b) E\left (i \text {arcsinh}\left (\sqrt {-\frac {1}{a+b}} \sqrt {a+b \cos (c+d x)}\right )|\frac {a+b}{a-b}\right )+b \left (-2 a \operatorname {EllipticF}\left (i \text {arcsinh}\left (\sqrt {-\frac {1}{a+b}} \sqrt {a+b \cos (c+d x)}\right ),\frac {a+b}{a-b}\right )+b \operatorname {EllipticPi}\left (\frac {a+b}{a},i \text {arcsinh}\left (\sqrt {-\frac {1}{a+b}} \sqrt {a+b \cos (c+d x)}\right ),\frac {a+b}{a-b}\right )\right )\right )}{a b \sqrt {-\frac {1}{a+b}}}+4 a A \sqrt {a+b \cos (c+d x)} \tan (c+d x)}{4 d} \]

input
Integrate[(a + b*Cos[c + d*x])^(3/2)*(A + B*Cos[c + d*x])*Sec[c + d*x]^2,x 
]
 
output
((8*b*(A*b + 2*a*B)*Sqrt[(a + b*Cos[c + d*x])/(a + b)]*EllipticF[(c + d*x) 
/2, (2*b)/(a + b)])/Sqrt[a + b*Cos[c + d*x]] + (2*(5*a*A*b + 4*a^2*B + 2*b 
^2*B)*Sqrt[(a + b*Cos[c + d*x])/(a + b)]*EllipticPi[2, (c + d*x)/2, (2*b)/ 
(a + b)])/Sqrt[a + b*Cos[c + d*x]] + ((2*I)*(-(a*A) + 2*b*B)*Sqrt[-((b*(-1 
 + Cos[c + d*x]))/(a + b))]*Sqrt[(b*(1 + Cos[c + d*x]))/(-a + b)]*Csc[c + 
d*x]*(-2*a*(a - b)*EllipticE[I*ArcSinh[Sqrt[-(a + b)^(-1)]*Sqrt[a + b*Cos[ 
c + d*x]]], (a + b)/(a - b)] + b*(-2*a*EllipticF[I*ArcSinh[Sqrt[-(a + b)^( 
-1)]*Sqrt[a + b*Cos[c + d*x]]], (a + b)/(a - b)] + b*EllipticPi[(a + b)/a, 
 I*ArcSinh[Sqrt[-(a + b)^(-1)]*Sqrt[a + b*Cos[c + d*x]]], (a + b)/(a - b)] 
)))/(a*b*Sqrt[-(a + b)^(-1)]) + 4*a*A*Sqrt[a + b*Cos[c + d*x]]*Tan[c + d*x 
])/(4*d)
 
3.4.8.3 Rubi [A] (verified)

Time = 1.98 (sec) , antiderivative size = 246, normalized size of antiderivative = 1.06, number of steps used = 18, number of rules used = 18, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.545, Rules used = {3042, 3468, 27, 3042, 3538, 25, 3042, 3134, 3042, 3132, 3481, 3042, 3142, 3042, 3140, 3286, 3042, 3284}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \sec ^2(c+d x) (a+b \cos (c+d x))^{3/2} (A+B \cos (c+d x)) \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\left (a+b \sin \left (c+d x+\frac {\pi }{2}\right )\right )^{3/2} \left (A+B \sin \left (c+d x+\frac {\pi }{2}\right )\right )}{\sin \left (c+d x+\frac {\pi }{2}\right )^2}dx\)

\(\Big \downarrow \) 3468

\(\displaystyle \int \frac {\left (-b (a A-2 b B) \cos ^2(c+d x)+2 b (A b+2 a B) \cos (c+d x)+a (3 A b+2 a B)\right ) \sec (c+d x)}{2 \sqrt {a+b \cos (c+d x)}}dx+\frac {a A \tan (c+d x) \sqrt {a+b \cos (c+d x)}}{d}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {1}{2} \int \frac {\left (-b (a A-2 b B) \cos ^2(c+d x)+2 b (A b+2 a B) \cos (c+d x)+a (3 A b+2 a B)\right ) \sec (c+d x)}{\sqrt {a+b \cos (c+d x)}}dx+\frac {a A \tan (c+d x) \sqrt {a+b \cos (c+d x)}}{d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{2} \int \frac {-b (a A-2 b B) \sin \left (c+d x+\frac {\pi }{2}\right )^2+2 b (A b+2 a B) \sin \left (c+d x+\frac {\pi }{2}\right )+a (3 A b+2 a B)}{\sin \left (c+d x+\frac {\pi }{2}\right ) \sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx+\frac {a A \tan (c+d x) \sqrt {a+b \cos (c+d x)}}{d}\)

\(\Big \downarrow \) 3538

\(\displaystyle \frac {1}{2} \left (-\frac {\int -\frac {\left (a b (3 A b+2 a B)+b \left (A a^2+2 b B a+2 A b^2\right ) \cos (c+d x)\right ) \sec (c+d x)}{\sqrt {a+b \cos (c+d x)}}dx}{b}-\left ((a A-2 b B) \int \sqrt {a+b \cos (c+d x)}dx\right )\right )+\frac {a A \tan (c+d x) \sqrt {a+b \cos (c+d x)}}{d}\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {1}{2} \left (\frac {\int \frac {\left (a b (3 A b+2 a B)+b \left (A a^2+2 b B a+2 A b^2\right ) \cos (c+d x)\right ) \sec (c+d x)}{\sqrt {a+b \cos (c+d x)}}dx}{b}-(a A-2 b B) \int \sqrt {a+b \cos (c+d x)}dx\right )+\frac {a A \tan (c+d x) \sqrt {a+b \cos (c+d x)}}{d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{2} \left (\frac {\int \frac {a b (3 A b+2 a B)+b \left (A a^2+2 b B a+2 A b^2\right ) \sin \left (c+d x+\frac {\pi }{2}\right )}{\sin \left (c+d x+\frac {\pi }{2}\right ) \sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx}{b}-(a A-2 b B) \int \sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}dx\right )+\frac {a A \tan (c+d x) \sqrt {a+b \cos (c+d x)}}{d}\)

\(\Big \downarrow \) 3134

\(\displaystyle \frac {1}{2} \left (\frac {\int \frac {a b (3 A b+2 a B)+b \left (A a^2+2 b B a+2 A b^2\right ) \sin \left (c+d x+\frac {\pi }{2}\right )}{\sin \left (c+d x+\frac {\pi }{2}\right ) \sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx}{b}-\frac {(a A-2 b B) \sqrt {a+b \cos (c+d x)} \int \sqrt {\frac {a}{a+b}+\frac {b \cos (c+d x)}{a+b}}dx}{\sqrt {\frac {a+b \cos (c+d x)}{a+b}}}\right )+\frac {a A \tan (c+d x) \sqrt {a+b \cos (c+d x)}}{d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{2} \left (\frac {\int \frac {a b (3 A b+2 a B)+b \left (A a^2+2 b B a+2 A b^2\right ) \sin \left (c+d x+\frac {\pi }{2}\right )}{\sin \left (c+d x+\frac {\pi }{2}\right ) \sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx}{b}-\frac {(a A-2 b B) \sqrt {a+b \cos (c+d x)} \int \sqrt {\frac {a}{a+b}+\frac {b \sin \left (c+d x+\frac {\pi }{2}\right )}{a+b}}dx}{\sqrt {\frac {a+b \cos (c+d x)}{a+b}}}\right )+\frac {a A \tan (c+d x) \sqrt {a+b \cos (c+d x)}}{d}\)

\(\Big \downarrow \) 3132

\(\displaystyle \frac {1}{2} \left (\frac {\int \frac {a b (3 A b+2 a B)+b \left (A a^2+2 b B a+2 A b^2\right ) \sin \left (c+d x+\frac {\pi }{2}\right )}{\sin \left (c+d x+\frac {\pi }{2}\right ) \sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx}{b}-\frac {2 (a A-2 b B) \sqrt {a+b \cos (c+d x)} E\left (\frac {1}{2} (c+d x)|\frac {2 b}{a+b}\right )}{d \sqrt {\frac {a+b \cos (c+d x)}{a+b}}}\right )+\frac {a A \tan (c+d x) \sqrt {a+b \cos (c+d x)}}{d}\)

\(\Big \downarrow \) 3481

\(\displaystyle \frac {1}{2} \left (\frac {b \left (a^2 A+2 a b B+2 A b^2\right ) \int \frac {1}{\sqrt {a+b \cos (c+d x)}}dx+a b (2 a B+3 A b) \int \frac {\sec (c+d x)}{\sqrt {a+b \cos (c+d x)}}dx}{b}-\frac {2 (a A-2 b B) \sqrt {a+b \cos (c+d x)} E\left (\frac {1}{2} (c+d x)|\frac {2 b}{a+b}\right )}{d \sqrt {\frac {a+b \cos (c+d x)}{a+b}}}\right )+\frac {a A \tan (c+d x) \sqrt {a+b \cos (c+d x)}}{d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{2} \left (\frac {b \left (a^2 A+2 a b B+2 A b^2\right ) \int \frac {1}{\sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx+a b (2 a B+3 A b) \int \frac {1}{\sin \left (c+d x+\frac {\pi }{2}\right ) \sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx}{b}-\frac {2 (a A-2 b B) \sqrt {a+b \cos (c+d x)} E\left (\frac {1}{2} (c+d x)|\frac {2 b}{a+b}\right )}{d \sqrt {\frac {a+b \cos (c+d x)}{a+b}}}\right )+\frac {a A \tan (c+d x) \sqrt {a+b \cos (c+d x)}}{d}\)

\(\Big \downarrow \) 3142

\(\displaystyle \frac {1}{2} \left (\frac {\frac {b \left (a^2 A+2 a b B+2 A b^2\right ) \sqrt {\frac {a+b \cos (c+d x)}{a+b}} \int \frac {1}{\sqrt {\frac {a}{a+b}+\frac {b \cos (c+d x)}{a+b}}}dx}{\sqrt {a+b \cos (c+d x)}}+a b (2 a B+3 A b) \int \frac {1}{\sin \left (c+d x+\frac {\pi }{2}\right ) \sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx}{b}-\frac {2 (a A-2 b B) \sqrt {a+b \cos (c+d x)} E\left (\frac {1}{2} (c+d x)|\frac {2 b}{a+b}\right )}{d \sqrt {\frac {a+b \cos (c+d x)}{a+b}}}\right )+\frac {a A \tan (c+d x) \sqrt {a+b \cos (c+d x)}}{d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{2} \left (\frac {\frac {b \left (a^2 A+2 a b B+2 A b^2\right ) \sqrt {\frac {a+b \cos (c+d x)}{a+b}} \int \frac {1}{\sqrt {\frac {a}{a+b}+\frac {b \sin \left (c+d x+\frac {\pi }{2}\right )}{a+b}}}dx}{\sqrt {a+b \cos (c+d x)}}+a b (2 a B+3 A b) \int \frac {1}{\sin \left (c+d x+\frac {\pi }{2}\right ) \sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx}{b}-\frac {2 (a A-2 b B) \sqrt {a+b \cos (c+d x)} E\left (\frac {1}{2} (c+d x)|\frac {2 b}{a+b}\right )}{d \sqrt {\frac {a+b \cos (c+d x)}{a+b}}}\right )+\frac {a A \tan (c+d x) \sqrt {a+b \cos (c+d x)}}{d}\)

\(\Big \downarrow \) 3140

\(\displaystyle \frac {1}{2} \left (\frac {a b (2 a B+3 A b) \int \frac {1}{\sin \left (c+d x+\frac {\pi }{2}\right ) \sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx+\frac {2 b \left (a^2 A+2 a b B+2 A b^2\right ) \sqrt {\frac {a+b \cos (c+d x)}{a+b}} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),\frac {2 b}{a+b}\right )}{d \sqrt {a+b \cos (c+d x)}}}{b}-\frac {2 (a A-2 b B) \sqrt {a+b \cos (c+d x)} E\left (\frac {1}{2} (c+d x)|\frac {2 b}{a+b}\right )}{d \sqrt {\frac {a+b \cos (c+d x)}{a+b}}}\right )+\frac {a A \tan (c+d x) \sqrt {a+b \cos (c+d x)}}{d}\)

\(\Big \downarrow \) 3286

\(\displaystyle \frac {1}{2} \left (\frac {\frac {a b (2 a B+3 A b) \sqrt {\frac {a+b \cos (c+d x)}{a+b}} \int \frac {\sec (c+d x)}{\sqrt {\frac {a}{a+b}+\frac {b \cos (c+d x)}{a+b}}}dx}{\sqrt {a+b \cos (c+d x)}}+\frac {2 b \left (a^2 A+2 a b B+2 A b^2\right ) \sqrt {\frac {a+b \cos (c+d x)}{a+b}} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),\frac {2 b}{a+b}\right )}{d \sqrt {a+b \cos (c+d x)}}}{b}-\frac {2 (a A-2 b B) \sqrt {a+b \cos (c+d x)} E\left (\frac {1}{2} (c+d x)|\frac {2 b}{a+b}\right )}{d \sqrt {\frac {a+b \cos (c+d x)}{a+b}}}\right )+\frac {a A \tan (c+d x) \sqrt {a+b \cos (c+d x)}}{d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{2} \left (\frac {\frac {a b (2 a B+3 A b) \sqrt {\frac {a+b \cos (c+d x)}{a+b}} \int \frac {1}{\sin \left (c+d x+\frac {\pi }{2}\right ) \sqrt {\frac {a}{a+b}+\frac {b \sin \left (c+d x+\frac {\pi }{2}\right )}{a+b}}}dx}{\sqrt {a+b \cos (c+d x)}}+\frac {2 b \left (a^2 A+2 a b B+2 A b^2\right ) \sqrt {\frac {a+b \cos (c+d x)}{a+b}} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),\frac {2 b}{a+b}\right )}{d \sqrt {a+b \cos (c+d x)}}}{b}-\frac {2 (a A-2 b B) \sqrt {a+b \cos (c+d x)} E\left (\frac {1}{2} (c+d x)|\frac {2 b}{a+b}\right )}{d \sqrt {\frac {a+b \cos (c+d x)}{a+b}}}\right )+\frac {a A \tan (c+d x) \sqrt {a+b \cos (c+d x)}}{d}\)

\(\Big \downarrow \) 3284

\(\displaystyle \frac {1}{2} \left (\frac {\frac {2 b \left (a^2 A+2 a b B+2 A b^2\right ) \sqrt {\frac {a+b \cos (c+d x)}{a+b}} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),\frac {2 b}{a+b}\right )}{d \sqrt {a+b \cos (c+d x)}}+\frac {2 a b (2 a B+3 A b) \sqrt {\frac {a+b \cos (c+d x)}{a+b}} \operatorname {EllipticPi}\left (2,\frac {1}{2} (c+d x),\frac {2 b}{a+b}\right )}{d \sqrt {a+b \cos (c+d x)}}}{b}-\frac {2 (a A-2 b B) \sqrt {a+b \cos (c+d x)} E\left (\frac {1}{2} (c+d x)|\frac {2 b}{a+b}\right )}{d \sqrt {\frac {a+b \cos (c+d x)}{a+b}}}\right )+\frac {a A \tan (c+d x) \sqrt {a+b \cos (c+d x)}}{d}\)

input
Int[(a + b*Cos[c + d*x])^(3/2)*(A + B*Cos[c + d*x])*Sec[c + d*x]^2,x]
 
output
((-2*(a*A - 2*b*B)*Sqrt[a + b*Cos[c + d*x]]*EllipticE[(c + d*x)/2, (2*b)/( 
a + b)])/(d*Sqrt[(a + b*Cos[c + d*x])/(a + b)]) + ((2*b*(a^2*A + 2*A*b^2 + 
 2*a*b*B)*Sqrt[(a + b*Cos[c + d*x])/(a + b)]*EllipticF[(c + d*x)/2, (2*b)/ 
(a + b)])/(d*Sqrt[a + b*Cos[c + d*x]]) + (2*a*b*(3*A*b + 2*a*B)*Sqrt[(a + 
b*Cos[c + d*x])/(a + b)]*EllipticPi[2, (c + d*x)/2, (2*b)/(a + b)])/(d*Sqr 
t[a + b*Cos[c + d*x]]))/b)/2 + (a*A*Sqrt[a + b*Cos[c + d*x]]*Tan[c + d*x]) 
/d
 

3.4.8.3.1 Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3132
Int[Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[2*(Sqrt[a 
 + b]/d)*EllipticE[(1/2)*(c - Pi/2 + d*x), 2*(b/(a + b))], x] /; FreeQ[{a, 
b, c, d}, x] && NeQ[a^2 - b^2, 0] && GtQ[a + b, 0]
 

rule 3134
Int[Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[Sqrt[a + 
b*Sin[c + d*x]]/Sqrt[(a + b*Sin[c + d*x])/(a + b)]   Int[Sqrt[a/(a + b) + ( 
b/(a + b))*Sin[c + d*x]], x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2 
, 0] &&  !GtQ[a + b, 0]
 

rule 3140
Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/(d*S 
qrt[a + b]))*EllipticF[(1/2)*(c - Pi/2 + d*x), 2*(b/(a + b))], x] /; FreeQ[ 
{a, b, c, d}, x] && NeQ[a^2 - b^2, 0] && GtQ[a + b, 0]
 

rule 3142
Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[Sqrt[(a 
 + b*Sin[c + d*x])/(a + b)]/Sqrt[a + b*Sin[c + d*x]]   Int[1/Sqrt[a/(a + b) 
 + (b/(a + b))*Sin[c + d*x]], x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - 
 b^2, 0] &&  !GtQ[a + b, 0]
 

rule 3284
Int[1/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])*Sqrt[(c_.) + (d_.)*sin[(e_.) 
 + (f_.)*(x_)]]), x_Symbol] :> Simp[(2/(f*(a + b)*Sqrt[c + d]))*EllipticPi[ 
2*(b/(a + b)), (1/2)*(e - Pi/2 + f*x), 2*(d/(c + d))], x] /; FreeQ[{a, b, c 
, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 
0] && GtQ[c + d, 0]
 

rule 3286
Int[1/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])*Sqrt[(c_.) + (d_.)*sin[(e_.) 
 + (f_.)*(x_)]]), x_Symbol] :> Simp[Sqrt[(c + d*Sin[e + f*x])/(c + d)]/Sqrt 
[c + d*Sin[e + f*x]]   Int[1/((a + b*Sin[e + f*x])*Sqrt[c/(c + d) + (d/(c + 
 d))*Sin[e + f*x]]), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a* 
d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] &&  !GtQ[c + d, 0]
 

rule 3468
Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + 
 (f_.)*(x_)])*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Si 
mp[(-(b*c - a*d))*(B*c - A*d)*Cos[e + f*x]*(a + b*Sin[e + f*x])^(m - 1)*((c 
 + d*Sin[e + f*x])^(n + 1)/(d*f*(n + 1)*(c^2 - d^2))), x] + Simp[1/(d*(n + 
1)*(c^2 - d^2))   Int[(a + b*Sin[e + f*x])^(m - 2)*(c + d*Sin[e + f*x])^(n 
+ 1)*Simp[b*(b*c - a*d)*(B*c - A*d)*(m - 1) + a*d*(a*A*c + b*B*c - (A*b + a 
*B)*d)*(n + 1) + (b*(b*d*(B*c - A*d) + a*(A*c*d + B*(c^2 - 2*d^2)))*(n + 1) 
 - a*(b*c - a*d)*(B*c - A*d)*(n + 2))*Sin[e + f*x] + b*(d*(A*b*c + a*B*c - 
a*A*d)*(m + n + 1) - b*B*(c^2*m + d^2*(n + 1)))*Sin[e + f*x]^2, x], x], x] 
/; FreeQ[{a, b, c, d, e, f, A, B}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2 
, 0] && NeQ[c^2 - d^2, 0] && GtQ[m, 1] && LtQ[n, -1]
 

rule 3481
Int[(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) 
+ (f_.)*(x_)]))/((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[ 
B/d   Int[(a + b*Sin[e + f*x])^m, x], x] - Simp[(B*c - A*d)/d   Int[(a + b* 
Sin[e + f*x])^m/(c + d*Sin[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f, A, 
 B, m}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]
 

rule 3538
Int[((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_.)*(x_)]^ 
2)/(Sqrt[(a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*((c_.) + (d_.)*sin[(e_.) + 
(f_.)*(x_)])), x_Symbol] :> Simp[C/(b*d)   Int[Sqrt[a + b*Sin[e + f*x]], x] 
, x] - Simp[1/(b*d)   Int[Simp[a*c*C - A*b*d + (b*c*C - b*B*d + a*C*d)*Sin[ 
e + f*x], x]/(Sqrt[a + b*Sin[e + f*x]]*(c + d*Sin[e + f*x])), x], x] /; Fre 
eQ[{a, b, c, d, e, f, A, B, C}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0 
] && NeQ[c^2 - d^2, 0]
 
3.4.8.4 Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(990\) vs. \(2(305)=610\).

Time = 12.20 (sec) , antiderivative size = 991, normalized size of antiderivative = 4.27

method result size
parts \(\text {Expression too large to display}\) \(991\)
default \(\text {Expression too large to display}\) \(1168\)

input
int((a+cos(d*x+c)*b)^(3/2)*(A+B*cos(d*x+c))*sec(d*x+c)^2,x,method=_RETURNV 
ERBOSE)
 
output
-A*((2*b*cos(1/2*d*x+1/2*c)^2+a-b)*sin(1/2*d*x+1/2*c)^2)^(1/2)*(4*cos(1/2* 
d*x+1/2*c)*sin(1/2*d*x+1/2*c)^4*a*b+(-2*a^2-2*a*b)*sin(1/2*d*x+1/2*c)^2*co 
s(1/2*d*x+1/2*c)-2*(-2*b/(a-b)*sin(1/2*d*x+1/2*c)^2+(a+b)/(a-b))^(1/2)*(si 
n(1/2*d*x+1/2*c)^2)^(1/2)*(EllipticF(cos(1/2*d*x+1/2*c),(-2*b/(a-b))^(1/2) 
)*a^2+2*EllipticF(cos(1/2*d*x+1/2*c),(-2*b/(a-b))^(1/2))*b^2-EllipticE(cos 
(1/2*d*x+1/2*c),(-2*b/(a-b))^(1/2))*a^2+b*EllipticE(cos(1/2*d*x+1/2*c),(-2 
*b/(a-b))^(1/2))*a-3*EllipticPi(cos(1/2*d*x+1/2*c),2,(-2*b/(a-b))^(1/2))*a 
*b)*sin(1/2*d*x+1/2*c)^2+(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*b/(a-b)*sin(1/2* 
d*x+1/2*c)^2+(a+b)/(a-b))^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),(-2*b/(a-b))^ 
(1/2))*a^2+2*b^2*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*b/(a-b)*sin(1/2*d*x+1/2* 
c)^2+(a+b)/(a-b))^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),(-2*b/(a-b))^(1/2))-( 
sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*b/(a-b)*sin(1/2*d*x+1/2*c)^2+(a+b)/(a-b))^ 
(1/2)*EllipticE(cos(1/2*d*x+1/2*c),(-2*b/(a-b))^(1/2))*a^2+(sin(1/2*d*x+1/ 
2*c)^2)^(1/2)*(-2*b/(a-b)*sin(1/2*d*x+1/2*c)^2+(a+b)/(a-b))^(1/2)*b*Ellipt 
icE(cos(1/2*d*x+1/2*c),(-2*b/(a-b))^(1/2))*a-3*a*b*(sin(1/2*d*x+1/2*c)^2)^ 
(1/2)*(-2*b/(a-b)*sin(1/2*d*x+1/2*c)^2+(a+b)/(a-b))^(1/2)*EllipticPi(cos(1 
/2*d*x+1/2*c),2,(-2*b/(a-b))^(1/2)))/(2*cos(1/2*d*x+1/2*c)^2-1)/(-2*sin(1/ 
2*d*x+1/2*c)^4*b+(a+b)*sin(1/2*d*x+1/2*c)^2)^(1/2)/sin(1/2*d*x+1/2*c)/(-2* 
b*sin(1/2*d*x+1/2*c)^2+a+b)^(1/2)/d-2*B*((2*b*cos(1/2*d*x+1/2*c)^2+a-b)*si 
n(1/2*d*x+1/2*c)^2)^(1/2)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*((2*b*cos(1/2*d*...
 
3.4.8.5 Fricas [F]

\[ \int (a+b \cos (c+d x))^{3/2} (A+B \cos (c+d x)) \sec ^2(c+d x) \, dx=\int { {\left (B \cos \left (d x + c\right ) + A\right )} {\left (b \cos \left (d x + c\right ) + a\right )}^{\frac {3}{2}} \sec \left (d x + c\right )^{2} \,d x } \]

input
integrate((a+b*cos(d*x+c))^(3/2)*(A+B*cos(d*x+c))*sec(d*x+c)^2,x, algorith 
m="fricas")
 
output
integral((B*b*cos(d*x + c)^2 + A*a + (B*a + A*b)*cos(d*x + c))*sqrt(b*cos( 
d*x + c) + a)*sec(d*x + c)^2, x)
 
3.4.8.6 Sympy [F(-1)]

Timed out. \[ \int (a+b \cos (c+d x))^{3/2} (A+B \cos (c+d x)) \sec ^2(c+d x) \, dx=\text {Timed out} \]

input
integrate((a+b*cos(d*x+c))**(3/2)*(A+B*cos(d*x+c))*sec(d*x+c)**2,x)
 
output
Timed out
 
3.4.8.7 Maxima [F]

\[ \int (a+b \cos (c+d x))^{3/2} (A+B \cos (c+d x)) \sec ^2(c+d x) \, dx=\int { {\left (B \cos \left (d x + c\right ) + A\right )} {\left (b \cos \left (d x + c\right ) + a\right )}^{\frac {3}{2}} \sec \left (d x + c\right )^{2} \,d x } \]

input
integrate((a+b*cos(d*x+c))^(3/2)*(A+B*cos(d*x+c))*sec(d*x+c)^2,x, algorith 
m="maxima")
 
output
integrate((B*cos(d*x + c) + A)*(b*cos(d*x + c) + a)^(3/2)*sec(d*x + c)^2, 
x)
 
3.4.8.8 Giac [F]

\[ \int (a+b \cos (c+d x))^{3/2} (A+B \cos (c+d x)) \sec ^2(c+d x) \, dx=\int { {\left (B \cos \left (d x + c\right ) + A\right )} {\left (b \cos \left (d x + c\right ) + a\right )}^{\frac {3}{2}} \sec \left (d x + c\right )^{2} \,d x } \]

input
integrate((a+b*cos(d*x+c))^(3/2)*(A+B*cos(d*x+c))*sec(d*x+c)^2,x, algorith 
m="giac")
 
output
integrate((B*cos(d*x + c) + A)*(b*cos(d*x + c) + a)^(3/2)*sec(d*x + c)^2, 
x)
 
3.4.8.9 Mupad [F(-1)]

Timed out. \[ \int (a+b \cos (c+d x))^{3/2} (A+B \cos (c+d x)) \sec ^2(c+d x) \, dx=\int \frac {\left (A+B\,\cos \left (c+d\,x\right )\right )\,{\left (a+b\,\cos \left (c+d\,x\right )\right )}^{3/2}}{{\cos \left (c+d\,x\right )}^2} \,d x \]

input
int(((A + B*cos(c + d*x))*(a + b*cos(c + d*x))^(3/2))/cos(c + d*x)^2,x)
 
output
int(((A + B*cos(c + d*x))*(a + b*cos(c + d*x))^(3/2))/cos(c + d*x)^2, x)